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We show that large deviation properties of Erdös-Rényi random graphs can be
derived from the free energy of the q-state Potts model of statistical mechan-
ics. More precisely the Legendre transform of the Potts free energy with respect
to ln q is related to the component generating function of the graph ensem-
ble. This generalizes the well-known mapping between typical properties of ran-
dom graphs and the q→1 limit of the Potts free energy. For exponentially rare
graphs we explicitly calculate the number of components, the size of the giant
component, the degree distributions inside and outside the giant component,
and the distribution of small component sizes. We also perform numerical sim-
ulations which are in very good agreement with our analytical work. Finally we
demonstrate how the same results can be derived by studying the evolution of
random graphs under the insertion of new vertices and edges, without recourse
to the thermodynamics of the Potts model.
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1. INTRODUCTION

Random graphs have kept being an issue of tremendous interest in proba-
bility and graph theory ever since the seminal work by Erdös and Rényi(1)

more than four decades ago. In addition to fixed edge number and fixed
edge probability distributions also random graphs with constant vertex
degree(2) or power law degree distribution(3,4) have been investigated. Most
of the efforts devoted to the study of the properties of random graphs
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have taken advantage of the fact that these properties undergo some
concentration process in the infinite size (number of vertices) limit. For
instance, the numbers of vertices in the largest component or the number
of connected components, which are stochastic in nature, become highly
concentrated in this limit, and with high probability do not differ from
their average values.

For large but finite sizes, properties as the one evoked above obvi-
ously fluctuate from graph to graph. The understanding of their statis-
tical deviations are important for several problems in statistical physics,
e.g., for the life-time of metastable states and the extremal properties of
models defined on random graphs,(5) as well as in computer science, e.g.,
for information-packet transmission in random networks,(6,7) resolution of
random decision problems with search procedures(8–10) and others. Up to
now apparently little attention has been paid to a quantitative character-
ization of large deviations in random graph ensembles.(11,12)

The present work is intended to contribute to an improved under-
standing of rare fluctuations in random graphs. Our main objective was
to devise a microscopic “mean-field" approach permitting to handle such
rare deviations in much the same way as for average properties of various
similar problems, as e.g., bootstrap and rigidity percolation (13) and spin-
glasses.(14) The mean-field approach relies on a statistical stability argu-
ment: a large graph is not strongly modified when adding an edge and/or
a vertex. This statement can be translated into some self-consistent equa-
tions for the average value of physical properties of interest, as e.g., the
magnetization for a spin system, or the probability of belonging to the
k-core for bootstrap percolation. We will show in the present work that
a similar self-consistent approach can also be successfully used to access
large deviations in random graphs.

The main property we focus on throughout this paper is the number
of connected components of a random graph. As established by Fortuin
and Kasteleyn,(15) several properties of random graphs with a typical num-
ber of components can be inferred from the knowledge of the thermody-
namics of the q-state Potts model on a complete graph for values of q
around 1. We will show that the thermodynamic properties for general val-
ues of q can be used to additionally characterize the properties of random
graphs with an atypical number of components. This allows us to verify
the validity of our microscopic mean-field approach.

This paper is organized as follows. In Section 2, we introduce the
basic definitions and notations for the quantities studied. Section 3 is
devoted to the derivation of rare graphs properties through the study of
the Potts model. We show in Section 4 how these results can be rederived
through the requirement of the statistical stability of very large atypical
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graphs against the addition of a vertex and its attached edges, or an edge.
In Section 5 we describe our numerical procedure to simulate large devi-
ation properties of random graphs ensembles. Some conclusion is finally
proposed in Section 6.

2. BASIC NOTIONS

We begin by fixing some vocabulary. For a detailed and precise
account on random graphs we refer the reader to the textbook.(16) A
graph G is a collection of vertices numbered by i = 1, . . . ,N with edges
(i, j), i �= j , i, j = 1, . . . ,N connecting them. The number of edges is
between 0 (for the empty graph) and N(N−1)/2 (for the complete graph).
A component of a graph is a subset of connected vertices which are discon-
nect from the rest of the graph. The size S of a component is the number
of vertices it contains. Hence the empty graph consists of N components
of size 1 whereas the complete graph is made from a single component
of size N . The number of components of a graph G is denoted by C(G).
We are generally interested in properties of large graphs, N→∞.

We will consider random graphs in the sense that an edge between
two vertices may be present or absent with a certain probability. The var-
ious joint probabilities to be discussed below will be denoted in the form
P(x1, x2, . . . ;a1, a2, . . . ) with the xi representing the random variables and
the ai denoting the parameters of the distribution. In particular we con-
sider random graphs in which each pair of vertices is connected by an
edge with probability γ /N independently of all other pairs of vertices. The
parameter γ characterizes the connectivity of the graph. Since each vertex
establishes edges with probability γ /N with all the other N −1 vertices γ
is in the limit N → ∞ just the typical degree of a vertex denoted by d∗,
giving the average number of edges emanating from it.

More precisely, in this limit the degree d of a vertex is a random var-
iable obeying a Poisson law with parameter γ ,

P(d;γ )= e−γ γ
d

d!
. (1)

In particular, P(d = 0;γ )= e−γ is the fraction of isolated vertices. Hence
the average number of components of a random graph of the described
type is bounded from below by Ne−γ . Note also that the typical degree d∗
of a vertex remains finite for N→∞. Typical realization of such random
graphs are therefore sparse.
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The probability P(G;γ,N) of one particular random graph G with
N vertices and parameter γ derives from the binomial law,

P(G;γ,N)=
( γ
N

)L(G) (
1− γ

N

)(N2)−L(G)
= e− γN

2 +O(1)
( γ
N

)L(G)
, (2)

where L(G)=O(N) denotes the number of edges of graph G. To describe
the decomposition of a large random graph into its components, it is con-
venient to introduce the probability P(C;γ,N) of a random graph with N
vertices to have C components

P(C;γ,N)=
∑
G

P (G;γ,N) δ(C,C(G)), (3)

where δ(a, b) denotes the Kronecker delta.
A general observation is that for given γ and large N the probabil-

ity P(C;γ,N) gets sharply peaked at some typical value C∗ of C and the
probabilities for values of C significantly different from C∗ being exponen-
tially small in N . To describe this fact more quantitatively we introduce
the number of components per vertex c=C/N together with the quantity

ω(c, γ )= lim
N→∞

1
N

lnP(C;γ,N), (4)

where the existence of the limit is assumed. Clearly ω(c, γ )� 0 and the
typical value c∗ of c has ω(c∗, γ )=0. Averages with P(G;γ,N) are there-
fore dominated by graphs with a typical number of components.

The focus of the present paper is on properties of random graphs
which are atypical with respect to their number of components C. In order
to get access to the properties of these graphs we introduce the biased
probability distributions

P(G;γ, q,N)= 1
Z(γ, q,N)

P (G;γ,N)qC(G) (5)

with Z(γ, q,N) defined by

Z(γ, q,N)=
∑
G

P (G;γ,N)qC(G)=
∑
C

P (C;γ,N)qC. (6)
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The normalization constant Z(γ, q,N) in (5) has hence the meaning of
a component generating function of P(G;γ,N). Contrary to averages
with P(G;γ,N) those with P(G;γ, q,N) are dominated by graphs with
an atypical number of components which is fixed implicitly with the
parameter q. Values of q smaller than 1 shift weight to graphs with few
components whereas for q>1 graphs with many components dominate the
distribution. The typical case is obviously recovered for q=1.

Similar to ω(c, γ ) it is convenient to introduce the function

ϕ(γ, q)= lim
N→∞

1
N

ln Z(γ, q,N). (7)

From (6) and (4) it follows to leading order in N that

Z(γ, q,N)=
∫ 1

0
dc exp(N [ω(c, γ )+ c ln q]), (8)

and performing the integral by the Laplace method for large N we find
that ϕ(γ, q) and ω(c, γ ) are Legendre transforms of each other:

ϕ(γ, q)=max
c

[ω(c, γ )+ c ln q], ω(c, γ )=min
q

[ϕ(γ, q)− c ln q], (9)

q= exp(−∂ω
∂c
), c=q ∂ϕ

∂q
. (10)

The large deviation properties of the ensemble of random graphs as char-
acterized by ω(c, γ ) can hence be inferred from ϕ(γ, q). In the next sec-
tion we show how ϕ(γ, q) can be obtained from the statistical mechanics
of the Potts model.

For later use we also note that from differentiating (7) with respect to
γ we find using (6) and (2) to leading order in N

�(γ, q)= γ

2
+γ ∂ϕ

∂γ
. (11)

Here �(γ, q) denotes the average number of edges per vertex in the graph
where the average is performed with the distribution (5).
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3. THERMODYNAMICS OF ATYPICAL GRAPHS

3.1. The Mean-Field Potts Model

It has long been known(15) that certain characteristics of random
graphs are related to the thermodynamic properties of the Potts
model.(17,18) The Potts model is defined in terms of an energy function
E({σi}) depending on N spin variables σi, i = 1, . . . ,N , which may take
on q distinct values σ =0,1, ..., q−1. In the mean-field variant the energy
function reads

E({σi})=− 1
N

∑
i<j

δ(σi, σj )−h
q−1∑
σ=0

uσ
∑
i

δ(σ, σi), (12)

where huσ is an auxiliary field parallel to the direction σ .
The thermodynamic properties of the system at inverse temperature β

can be derived from the partition function

Z(β, h, q, {uσ },N)=
∑
{σi }

exp(−βE({σi})), (13)

where the sum runs over all qN spin configurations {σi}. A standard anal-
ysis (cf. the appendix) gives for the free energy

f (β,h, q, {uσ })=− lim
N→∞

1
βN

ln Z(β, h, q, {uσ },N) (14)

at h=0 the result

f (β, q) = extr
s0

[
− 1

2q
− q−1

2q
s2

0 − 1
β

ln q+ 1+ (q−1)s0
βq

ln(1+ (q−1)s0)

+q−1
βq

(1− s0) ln(1− s0)
]
. (15)

The saddle-point value s0(β, q) extremizing the expression in the brackets
is the stable solution of the equation

eβs0 = 1+ (q−1)s0

1− s0
. (16)

Clearly s0 = 0 is always a solution of this equation. It is, however, unsta-
ble for large β and another, non-trivial solution becomes stable which
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Fig. 1. Solution s0(β, q) of the saddle-point Eq. (16) as function of β for q=1,2,4,6 (from
left to right). For q � 2 the non-trivial solution s0 > 0 branches off continuously from the
high-temperature solution s0 =0 at β=q. For q >2 the new solution appears discontinuously
at the spinodal point βs<q by a subcritical bifurcation.

describes the spontaneous appearance of order in the low temperature
phase. Figure 1 displays the solutions of (16) as function of β for different
values of q. Note the subcriticial bifurcation in s0(β, q) for q >2.

3.2. Diagrammatic Expansion of the Potts Model

The relation between the Potts model and the random graph ensem-
ble introduced in Section 2 becomes apparent when considering the high-
temperature expansion of the free energy (14) of the Potts model. Since
the Kronecker delta can take only the values zero or unity, the partition
function (13) can be recast into the form(15)

Z(β, h, q, {uσ },N)=
∑
{σi }

∏
i<j

[
1+wδ(σi, σj )

]
eβ h

∑
σ uσ

∑
i δ(σi ,σ ), (17)

where

w= exp
(
β

N

)
−1= β

N
+O

(
1
N2

)
. (18)

When expanding the product appearing in (17) we obtain a sum of
2N(N−1)/2 terms each of which is in one–to–one correspondence with
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a graph. The N vertices of this graph represent the Potts variables σi ,
whereas an edge (i, j) stands for a factor wδ(σi, σj ). Performing the trace
over the configurations {σi} for each term in the sum, i.e., for each graph,
separately, the Kronecker deltas constrain the Potts variables belonging to
one component of the graph to the same value. As a result we find the
Potts partition function as a sum over graphs in the form

Z(β, h, q, {uσ },N)=
∑
G

wL(G)
C(G)−1∏
n=0

(∑
σ

eβhuσ Sn
)
, (19)

where the product is over all components of the graph and Sn denotes the
size of the n-th component. We will assume that n=0 refers to the largest
component.

From (19) and (18) we find

Z(β, h=0, q,N)=
∑
G

(
β

N

)L(G)
qC(G). (20)

and comparison with (6) and (2) yields to leading order in N

Z(γ, h=0, q,N)= e γN2 Z(γ, q,N). (21)

Correspondingly from (7) and (14) it follows that

f (γ, q)=−1
2

− 1
γ
ϕ(γ, q). (22)

Eqs. (21) and (22) establish the relation between the random graph ensem-
ble defined in Section 2 and the statistical mechanics of the Potts model
sketched in Section 3.1. In particular we obtain from (22) and (15)

ϕ(γ, q) = extr
s0

[
γ

2
q−1
q

(s2
0 −1)+ ln q− 1+ (q−1)s0

q
ln(1+ (q−1)s0)

−q−1
q

(1− s0) ln(1− s0)
]
, (23)

from which ω(c, γ ) follows with the help of the Legendre transform (9),
(10). The equation for the saddle-point value s0(γ, q) in (23) is from (16)

eγ s0 = 1+ (q−1)s0

1− s0
. (24)
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We also note for later convenience that using (24) in (23) the expression
for ϕ(γ, q) can be rewritten as

ϕ(γ, q)=−γ
2
q−1
q

(1+ s2
0)−

γ s0

q
+ ln(q−1+ eγ s0). (25)

To elucidate the meaning of s0 for the random graph ensemble we
consider the case uσ = δ(σ,0). Replacing β by γ in (19) we then find

Z(γ, h, q,N)=
∑
G

( γ
N

)L(G) C(G)−1∏
n=0

(
q−1+ eγhSn). (26)

For the derivative of the free energy (14) with respect to h this implies

∂f

∂h
(γ, h, q)

=− lim
N→∞

1
N

1
Z
∑
G

( γ
N

)L(G) C(G)−1∏
n=0

(
q−1+ eγhSn)

∑
m

Sm
eγhSm

q−1+ eγhSm . (27)

Assuming the existence of exactly one extensive component, i.e., S0 =
O(N) and Sm=o(N) for m>0, we have

lim
h→0

lim
N→∞

eγhSm

q−1+ eγhSm =
{

1 if m=0,
1
q

else. (28)

Observing finally
∑
m>0 Sm=N −S0 we find

lim
h→0

∂f

∂h
(γ, h, q)= 1

q

(
1+ (q−1)

〈S0〉
N

)
, (29)

where the average 〈. . . 〉 is with respect to the biased probability distribu-
tion (5). Comparing this expression with the result obtained for the same
quantity from (126) we realize that the stable solution s0(γ, q) of (24)
is nothing but the average fraction of vertices in the largest component,
s0 =〈S0〉/N , in an ensemble of random graphs with biased probability (5).
Hence the phase transition in the Potts model describing the appearance
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of a spontaneous magnetization at sufficiently low temperature 1/β cor-
responds to a percolation transition in the random graph ensemble giv-
ing birth to a giant component with extensively many vertices at sufficiently
large connectivity parameter γ .

It is finally useful to write (19) with β replaced by γ in the form

Z(γ, h, q, {uσ },N) = Z(γ, h=0, q,N)
〈

exp
(C(G)−1∑

n=0

ln
(∑

σ

eγhuσ Sn(G)
)

−C(G) ln q
)〉
, (30)

where the average is again taken with (5). We now concentrate on cases
with u0 = 1 and |uσ |< 1 for all σ �= 0. Singling out a possible giant com-
ponent of size S0 =Ns0 and grouping together all small components of the
same size we obtain for the free energy (14)

f (γ, h, q, {uσ }) = f (γ, h=0, q)− lim
N→∞

1
γN

ln
〈

exp
(
N
[
γ hs0(G)

+
∑
S

ψ(S,G) ln
∑
σ

eγhuσ S − c ln q
])〉

. (31)

Here we have introduced the number of components of size S of
graph G divided by N

ψ(S,G)= 1
N

C(G)−1∑
n=1

δ(S, Sn(G)). (32)

Eq. (31) forms a suitable starting point for the characterization of the dis-
tribution of small components from the Potts free energy.

3.3. Properties of Atypical Graphs

The connection between the Potts free energy and the component
generating function of Erdös–Rényi graphs allows to elucidate several
large deviation properties of the random graph ensemble. First we get for
the average number of edges per vertex from (11) and (23)

�(γ, q)= γ

2q

(
1+ (q−1)s2

0(γ, q)
)
. (33)
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The dependence of � on the relative size of the giant component s0(γ, q)

for q �= 1 indicates a non-trivial internal organization of edges in rare
graphs.

For the number of components of graphs dominating the distribution
(5) we find from (23) and (10)

c(γ, q)= (1− s0(γ, q)
)(

1− γ

2q

(
1− s0(γ, q)

))
. (34)

The above equations already give access to some microscopic information
on edges and vertices belonging to the giant component or to the small
components. Call �in and �out the average numbers of edges inside and
outside the giant component divided by N , respectively. Obviously, �in +
�out =�. In addition, since almost all small components are trees (cf. Sec-
tion 4.1), the number of these components is related to the number of
edges they contain through c=1− s0 − �out. From these two relations, we
obtain

�in(γ, q) = γ

2q

(
2 s0 + (q−2) s2

0

)
,

�out(γ, q) = γ

2q

(
1− s0

)2
, (35)

from which we deduce the average degrees

d in(γ, q) = γ

q

(
2+ (q−2) s0

)
,

dout(γ, q) = γ

q

(
1− s0

)
(36)

of vertices inside and outside the giant component, respectively. The
dependence of these degrees on q for one particular value of γ is shown
in Fig. 2 together with results from numerical simulations described in
Section 5.

In order to calculate the complete spectrum ω(c, q) using the Legen-
dre transform (9) we need to know ϕ(γ, q) for general real q > 0. We
have hence to study the extremization over s in (23) for fixed γ and vari-
able q. This is somewhat complementary to what is done in the statistical
mechanics of the Potts model where the free energy (15) is minimized for
integer q�2 and different values of β. Here we have to keep in mind that
the extremum in (23) is a minimum if q >1 but a maximum if 0<q<15.

5The reason for this is that due to the constraint (124) the free energy depends on (q − 1)
variables, a number which becomes negative for q <1.
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Fig. 2. Average degrees d in(γ, q) (dashed top) and dout(γ, q) (full) as functions of q

according to (36) for γ =0.25 (left) and γ =3 (right). The symbols indicate numerical results
(diamond = inside, circle = outside the giant component). The statistical error bars are much
smaller than the symbol size.

The dependence of ϕ(γ, q) on q is qualitatively different for γ �2 and
γ >2 as shown in Fig. 3. For γ � 2 the stable solution of (24) is positive
for q <γ , goes to zero for q→γ , and is identically zero for q >γ (cf. left
inset in Fig. 3). Accordingly ϕ(γ, q) shows a second order phase transition
at q=γ as displayed in the left part of Fig. 3. For γ >2 the small-q solu-
tion s0(γ, q)>0 remains stable up to q=qs>γ and coexists for γ <q<qs

with the solution s0 =0 which is stable for q >γ as before, see right inset
in Fig. 3. Accordingly the phase transition is now first order and takes
place at the Maxwell point q= qM where the two values of ϕ(γ, q) coin-
cide as shown in the right panel of Fig. 3. At the transition, the value of
s0 jumps discontinuously, and so does the derivative of ϕ(γ, q) with respect
to q.

Let us now turn to the discussion of ω(c, γ ). The bifurcation point
q=γ of ϕ(γ, q) maps according to (9) and (10) onto c=1/2 for all values
of γ . On the other hand the different behaviour of ϕ(γ, q) for γ � 2 and
γ >2 implies qualitative differences of ω(c, γ ) in the two cases as well.

For γ �2 we find from the Legendre transform (9) that for all values
of q there is exactly one corresponding value of c. Accordingly the tran-
sition from the percolating phase s0 > 0 at c < 1/2 to the small compo-
nent phase at c>1/2 is smooth as shown by the curves for γ =0.25,1,2 in
Fig. 4. From the expansion of (23) and (24) for values of q near γ we find
that together with ω(c) also its first and second derivatives with respect to
c are continuous at c=1/2 whereas the third derivative exhibits a jump if
γ �=1. The transition is therefore third order in the thermodynamical sense
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Fig. 3. Free energy (23) of the random graph ensemble as a function of q for connectivi-
ties γ = 1.8 (left) and γ = 4 (right). The full and dashed curve correspond to the small clus-
ters phase (s0 = 0) and the giant component phase (s0 > 0), respectively. Both free energies
coincide in q = 1 (point A). For γ � 2 (left), a second order phase transition arises when q

crosses q= γ (point B) with the size of the giant component approaching zero continuously
(left inset). When γ > 2 (right), the transition takes place at point C with abscissa qM > γ

and is first order. Both the slope of the free energy and the size of the giant component
(right inset) are discontinuous at the transition. Branches BD and CD correspond to unsta-
ble (local maximum) and metastable (secondary local minimum) solutions respectively.

if γ �= 1. Except for q = 1 the appearance of the giant component takes
place in graphs with exponentially small probabilities, ω(c= 1/2, γ ) < 0.
For γ < 1 this happens in the increasing part of ω(c, γ ), for γ > 1 in the
decreasing one in accordance with the fact that the slope of ω(c, γ ) is
given by − ln q, cf. (10), and that γ =q at the transition.

For γ > 2 the first order transition in ϕ(γ, q) implies via (9) that
for one particular value of q, namely q = qM, there are two correspond-
ing values, cM

1 and cM
2 , of c. Hence the biased probability distribution

P(C;γ, qM,N) is bimodal and ω(c, γ ) is non-convex in the interval cM
1 <

c < cM
2 . At the same time the Legendre transform (9) does only yield

the convex hull of ω(c, γ ) and therefore includes a linear part with slope
− ln qM interpolating between ω(cM

1 , γ ) and ω(cM
2 , γ ) as shown exempl-

arily for γ = 3 with the dotted line in Fig. 4. A random graph ensem-
ble generated according to P(C;γ, qM,N) is hence inhomogeneous in the
sense that it contains realizations with c=cM

1 (and with giant component)
and with c=cM

2 (and without giant component). The value of c in such an
ensemble depends on the relative fraction of these two realizations and is
determined by pre-exponential factors in P(C;γ, qM,N). The fraction of
realizations without giant component is zero for c= cM

1 , increases linearly
with c, and reaches one at c= cM

2 .
The above analytical results for ω(c, γ ) including the bimodal

distribution P(C;γ, q,N) for q = qM are in very good agreement with
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Fig. 4. Logarithmic probability distribution ω(c, γ ) of the number of components per ver-
tex, c, for different values of the connectivity parameter γ =0.25,1,2,3 (left bottom to top).
ω is maximal and zero for the most probable fraction of components c∗ given by (51). For
γ ≤2, there is a second order percolation transition at c=1/2 (points B) marking the appear-
ance of a giant component for c < 1/2. When γ > 2, a first order transition separates the
giant component phase (left to point C−) from the phase without giant component (right to
C+). In between, both phases coexist and the convex hull of ω is linear in c (dashed line).

extensive numerical simulations described in Section 5. This is exemplified
for γ =0.25 and γ =3 in Fig. 5.

For c>max(1/2, cM
2 ), i.e., in the region where s0(γ, q)= 0, it is pos-

sible to perform the Legendre transform (9) analytically to find

ω(c, γ )=−γ
2

+ (1− c)(1+ ln
γ

2
− ln(1− c)). (37)

Hence we have ω(c=1, γ )=−γ /2 for all values of γ which is, of course,
consistent with Fig. 4. This result holds as long as γ is finite. Another
interesting large-q limit is obtained if q and γ tend to infinity simulta-
neously with the ratio r = ln q/γ being kept constant.(19) The tendency
to prefer graphs with many components implied by q→ ∞ may then be
counterbalanced by the large connectivity parameter γ . In fact for r >1/2
we have q >qM(γ ) and hence s0 =0 which brings us back to (37). On the
other hand for r�1/2 we find from (24) to leading order s0 = r and hence
from (34) c= 1 − r. Therefore in this case γ is large enough to set up a
giant component while the other vertices are essentially isolated in order
to make the number of components as large as possible.
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Fig. 5. Comparison between analytical (full lines) and numerical (symbols) results for the
logarithmic probability ω(c, γ ) of Erdös–Renyi graphs with atypical number of components
for γ = 0.25 (left) and γ = 3 (right). The simulations were done for N = 1000 and are
described in Section 5, the statistical error bars are much smaller than the symbol size. The
big black dots have the same meaning as in Fig. 4.

The opposite limit c→ 0 corresponds to q → 0. The random graph
ensemble is for very small q dominated by graphs with very few compo-
nents and for q → 0 only fully connected graphs (i.e., those with C = 1)
survive. From (24) and (25) we find in this limit

s0(γ, q)=1− q

eγ −1
+O(q2), (38)

ϕ(γ, q)= ln(1− e−γ )+q γ (e
γ +1)

2(eγ −1)2
+O(q2). (39)

This results via (10) and (9) in

c(γ, q)=q γ (e
γ +1)

2(eγ −1)2
+O(q2), (40)

consistent with C→1 and

ω(c, γ )= ln(1− e−γ )− c ln c+O(c). (41)

The first term in this small c expansion, ω(c= 0, γ )= ln(1 − e−γ ), again
agrees with Fig. 4. It characterizes graphs with just a single compo-
nent and reproduces the known rigorous result that the probability of an
Erdös–Rényi random graph to be connected is asymptotically given by
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(1− e−γ )N .(11) The next term in the expansion, c ln c, is of entropic ori-
gin and describes the number of ways in which C�N components may
be formed from N vertices.

We may finally extract useful information on the size distribution of
small components from the Potts free energy. Let us denote by

ψ(S, γ, q)=
∑
G

P (G;γ, q,N)ψ(S,G) (42)

with ψ(S,G) defined by (32) the average distribution of small components
in a graph ensemble characterized by the biased distribution P(G;γ, q,N).
Consistent with the meaning of ψ(S,G) we then find to leading order
in N

∑
S

ψ(S, γ, q)= c(γ, q), (43)∑
S

ψ(S, γ, q)S=1− s0(γ, q) . (44)

To get in addition an expression for the second moment of ψ(S, γ, q) it is
useful to consider the second derivative of f (γ, h, q, {uσ }) with respect to
h at h=0 for field configurations with

u0 =1 and |uσ |<1 for σ =1, ..., q−1 . (45)

Denoting by 〈s2
0 〉c=〈s2

0 〉−〈s0〉2 the second cumulant of the relative size of
the giant component and using the abbreviations

û= 1
q

∑
σ

uσ and û2 = 1
q

∑
σ

u2
σ (46)

one can show from (31) that

− 1
γ

∂2f

∂h2
(γ, h=0, q)= (û2 − û2)

∑
S

ψ(S, γ, q)S2 + (1− û)2N〈s2
0 〉c . (47)



Erdös–Rényi Random Graphs 403

On the other hand, one finds from (126) for the same quantity after some
algebra

− 1
γ

∂2f

∂h2
(γ, h=0, q) = (û2 − û2)

q(1− s0)

q−γ (1− s0)
+ (1− û)2

× q2 s0 (1− s0)

(q−γ (1− s0))(q−γ (1− s0)(1+ (q−1)s0))
.

(48)

Since (47) and (48) must be identical for any choice of the fields uσ
consistent with (45) we are left with

∑
S

ψ(S, γ, q)S2 = q (1− s0)

q−γ (1− s0)
, (49)

〈s2
0 〉c= 1

N

q2 s0 (1− s0)

(q−γ (1− s0))(q−γ (1− s0)(1+ (q−1)s0))
. (50)

Figure 6 shows the first and second moment of ψ(S, γ, q) for two values
of γ as function of q together with results from the numerical simulations.
Note that for γ �2 the soft transition at γ =q gives rise to a diverging sec-
ond moment of ψ(S, γ, q) (left panel) whereas for γ > 2 it remains finite
at the transition (right panel). Accordingly the finite size corrections at the
transition are much larger in the first case.
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Fig. 6. First and second moment of the distribution of non-extensive component sizes
ψ(S, γ, q) as function of q for γ = 0.25 (left) and γ = 3 (right). Full lines are the analyti-
cal expressions describing the thermodynamic limit N→∞, symbols give results of numerical
simulations for N =1000 described in Section 5.
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It appears to be possible to extend the above procedure to obtain also
higher moments of ψ(S, γ, q), however the calculations become increas-
ingly tedious. We have not been able to derive a closed expression for
the complete distribution ψ(S, γ, q) from the Potts free energy except
for the case q= 1 which is discussed in Section 3.4. A general expression
for ψ(S, γ, q) will, however, be derived in Section 4.6 using our micro-
scopic approach.

3.4. Properties of Typical Random Graphs

In this subsection we rederive some of the central results for typical
graphs as special cases of our more general framework. As discussed in
Section 2 the random graph ensemble is for large values of N dominated
by graphs contributing to the maximum of ω(c, γ ). Since at this maximum
∂ω/∂c=0 we find from (10) that typical properties of random graphs can
be extracted from the Potts free energy in the vicinity of q = 1. This is
well known(15) and is, of course, also clear from the definition (5) implying
P(G;γ, q=1,N)=P(G;γ,N).

Explicitly we find for the typical number of components c∗ from (10)
and (23)

c∗ = (1− s∗0 )(1− γ

2
(1− s∗0 )), (51)

where the relative size of the giant component s∗0 is the stable solution of
the equation

1− s∗0 = e−γ s∗0 , (52)

which follows from (24) for q = 1. Eqs. (51) and (52) are classical results
of Erdös and Rényi.(1) For small values of γ almost all components of the
graph are small trees. Hence s∗0 =0 and each edge reduces the number of
components by one. With the typical number of edges per vertex given by
(cf. (11) and (23))

�∗ =�(γ, q=1)= γ

2
(53)

this implies c∗ = 1 − γ /2 which coincides with (51) for s∗0 = 0. For γ > 1
there is on average more than one edge attached to each vertex and hence
the connectivity may spread out through the whole system resulting in the
emergence of a giant component. Its size s∗0 is an increasing function of γ .
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Fig. 7. Properties of typical random graphs. Shown are the fraction s∗0 of vertices in the
largest component (left), and the number c∗ of components per vertex (right) as function of
the connectivity parameter γ . The vertical dashed line, γ = 1, indicates the location of the
percolation transition.

At the same time the giant component has a denser connectivity than a
tree involving loops which slows down the decrease of the number of com-
ponents c∗ with γ as described by (51). The dependence of s∗0 and c∗ on
γ is shown in Fig. 7. The reason for the remarkable similarity between the
results (51) and (34) for the number of components in typical and atypical
graphs, respectively, will become clear in Section 4.5.

For the case of typical graphs considered in this subsection it is pos-
sible to obtain some more detailed results. A simple application of Bayes’
equation for conditional probabilities(20) yields the complete degree distri-
bution inside and outside the giant component. The probability of a vertex
to have d edges is given by (1). The probability not to belong to the giant
component conditioned to having d edges is clearly P(out;d)= (1 − s∗0 )d .
The complementary probability to belong to the giant component is hence
P(in;d)=1− (1− s∗0 )d . Then from Bayes’ theorem we get for the probabil-
ity to have degree d conditioned to being not part and being part of the
giant component, respectively,

P ∗
out(d)=

P(out;d)P (d)
P (out)

= (1− s∗0 )d
1− s∗0

e−γ
γ d

d!
= e−γ (1−s∗0 ) (γ (1− s∗0 ))d

d!
, (54)

P ∗
in(d)=

P(in;d)P (d)
P (in)

= 1− (1− s∗0 )d
s∗0

e−γ
γ d

d!
. (55)

The last equality in (54) in which we have used (52) shows that the degree
distribution outside the giant component is still Poissonian. On the other
hand the distribution inside the giant component clearly deviates from a
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Poissonian law. Calculating the averages of the distributions (54) and (55)
we find

d∗
in(γ ) = γ (2− s∗0 ),

d∗
out(γ ) = γ (1− s∗0 ), (56)

consistent with (36) for q=1.
Also the complete distribution of component sizes can be determined

from the Potts free energy. In fact for the special choice uσ = δ(σ,0) we
find from (31)

∂2f

∂q ∂ h
(γ, h, q=1)=

∑
S

ψ∗(S, γ )S e−γ hS, (57)

with ψ∗(S, γ )=ψ(S, γ, q = 1). On the other hand from (126) we get for
the same configuration of the fields uσ the result

∂2f

∂q ∂ h
(γ, h, q=1)=1− s̃0(γ, h), (58)

where s̃0(γ, h) is the solution of

1− s̃0 = e−γ (h+s̃0). (59)

Comparing (57) and (58) we hence find

∞∑
S=1

ψ∗(S, γ ) S e−γ hS =1− s̃0(γ, h). (60)

From (59) and (60) it is straightforward to produce equations for all the
moments of ψ∗(S, γ ) through successive differentiation in h= 0. A more
direct way to obtain ψ∗(S, γ ) is to get from (59) the explicit dependence
of s̃0(γ, h) on γ and h with the help of the Lagrange inversion theorem(21)

1− s̃0 = 1
γ

∞∑
S=1

SS−1e−γ hS

S!

(
γ e−γ

)S
. (61)



Erdös–Rényi Random Graphs 407

From (60) and (61) we then infer

∞∑
S=1

ψ∗(S, γ ) S e−γ hS = 1
γ

∞∑
S=1

SS−1e−γ hS

S!

(
γ e−γ

)S
. (62)

Matching powers of e−γ h we finally obtain

ψ∗(S, γ )= 1
γ

SS−2

S!

(
γ e−γ

)S
, (63)

another classical result of Erdös and Rényi.(1) For the second moment of
this distribution we easily find

∞∑
S=1

ψ∗(S, γ ) S2 = γ (1− s∗0 )
1−γ (1− s∗0 )

, (64)

which reproduces (49) for q= 1. We also note that from the complemen-
tary equation (50) we get for q=1

〈s2
0 〉c= 1

N

s∗0 (1− s∗0 )
(1−γ (1− s∗0 ))2

, (65)

a result consistent with rigorous findings about the fluctuations of the rel-
ative size of the giant component of typical Erdös-Rényi graphs.(22)

4. EVOLUTION OF ATYPICAL GRAPHS

In this section we will look at rare graphs from a more microscopic
point of view focusing on individual vertices and edges. Our aim will be to
rederive several of the thermodynamic results presented above without ref-
erence to the Potts model. To this end we will study the evolution of rare
random graphs under the addition of a new vertex or a new edge. This is
similar in spirit to the so-called cavity method in the statistical mechanics
of disordered systems.(14) The main motivation of what follows is to find
an alternative way to quantitatively characterize rare graphs. It may be
helpful in the analysis of graphs which are atypical with respect to other
properties than the number of components, as e.g., the size of the giant
component or the number of loops. In these cases the relation to the Potts
model is no longer helpful and no thermodynamic approach seems to be
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known. Finally we will also derive some new results including the com-
plete degree distributions inside and outside the giant component and the
size distribution of non-extensive components. These results were obtained
above for typical graphs only.

4.1. Energetic versus Entropic Costs

From a microscopic point of view we may identify two qualitatively
different reasons for the exponentially small probability of a graph G. On
the one hand the number of edges in the graph may deviate by an exten-
sive amount from the typical number. On the other hand the distribu-
tion of edges among the vertices of the graph may differ from the typical
one. We will refer to these two different sources for an exponentially small
probability as energetic and entropic contribution, respectively.

The energetic cost is completely fixed by the probability distribution
of edges. The probability for a random graph to have L= �N edges is
given by (cf. (2))

P(L;γ,N) =
(
N2/2
L

) ( γ
N

)L (
1− γ

N

)N2/2−L

= exp
(
N
[
� ln

γ

2�
+�− γ

2

]
+O(1)

)
. (66)

The expression in the brackets is zero for �= �∗ = γ /2 reproducing (53).
It is negative for � �= �∗ and hence all other values of � have probabilities
exponentially small in N .

To leading order in N we find from (66)

P(L+1;γ,N)= γ

2 �
P (L;γ,N), (67)

which gives the change in the energetic contribution to the probability
when one edge is added. For �<γ/2 the probability increases by the inser-
tion of an edge, for �>γ/2 it decreases in accordance with the fact that
�=γ /2 is the typical case.

Let us then consider a graph with N vertices, no giant component,
and an atypically large number C of non-extensive components. A possible
realization of such a graph has all components as trees and an atypically
small number, L=N −C, of edges. However, this may be not the optimal
way to build the graph. In fact from (67) we see that the probability of
the graph increases by a factor of order 1 if we add another edge. On the
other hand, in order not to decrease at the same time the number of com-
ponents we have to put the new edge between two vertices of one of the
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already existing components. For a component with S=O(1) vertices (and
hence (S−1) edges) the chance to put the new edge between two of its
vertices is roughly (S− 1)(S− 2)/N2 =O(N−2). Multiplying by the num-
ber of components we find that the probability not to reduce this num-
ber by putting the new edge is of order O(1/N). For large N this decrease
in probability cannot be compensated by the O(1) energetic gain. Hence,
also in the case of rare graphs the non-extensive components are predom-
inantly trees.

The situation for graphs G without giant component is hence rather
clear. Since all components are trees their number is given by C(G)=N−
L(G). This implies a simple relation between the generating functions for
rare graphs (q �= 1) and typical graphs (q= 1) which follows from (6) and
(2):

Zs0=0(γ, q,N)=qNZs0=0(
γ

q
,1,N). (68)

Therefore these graphs are characterized by an effective connectivity
parameter γ /q and the number of edges per vertex is given by �=γ /(2q)
consistent with (33) for s0 = 0. The probability of such a graph is solely
determined by the energetic cost (66) yielding

P(G;γ, q,N, s0 =0)= exp
(
N

[
γ

2q
(1−q+ ln q)

])
. (69)

Replacing q in this expression by c according to (10) and (23) we find
back the logarithmic probability (37).

The situation changes in the presence of a giant component of size
S0 =O(N). From the same kind of reasoning as used above it is clear, that
the entropic cost for putting an additional edge inside the giant compo-
nent is O(1) and may hence well be over-compensated by the energetic
gain in probability.6 The precise balance between energetic and entropic
contributions in this case will be investigated in Subsection 4.2.

4.2. Adding an Edge

To quantify the entropic contribution to the probability let us consider
the probability P(C;L) for a graph with L edges to have C components.

6We expect the probability to have more than one extensive component to be negligible for
the graphs atypical with respect to the number of components considered here, similarly to
what happens for typical random graphs.(23) See also Section 4.6.
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Upon adding one more edge the number of components may change and
we have quite generally

P(C;L+1)=
∑
∆C

K(∆C)P (C+∆C;L). (70)

The kernel K(∆C) is easily determined. If the new edge lies with both
ends inside the giant component of the graph the number of components
does not change at all, otherwise it is reduced by one,

K(∆C)= s2
0 δ(∆C,0)+ (1− s2

0 ) δ(∆C,1). (71)

Combining (67) and (70) we hence find for the probability P(C,L;γ,N)=
P(C;L)P (L;γ,N) the evolution equation

P(C,L+1;γ,N)= γ

2 �

(
s2

0 P(C,L;γ,N)+ (1− s2
0 )P (C+1,L;γ,N)

)
.

(72)

For the biased probability

P(L;γ, q,N)= 1
Z(γ, q,N)

∑
C

P (C,L;γ,N)qC, (73)

where Z(γ, q,N) is defined by (6) this implies

P(L+1;γ, q,N)= γ

2 �q
(1+ (q−1)s2

0 )P (L;γ, q,N) (74)

as follows from (72) by multiplying with qC and summing over C. Sum-
ming (74) over L and using the fact that this sum is dominated by graphs
with �=�(γ, q) and s0 = s0(γ, q) we find for the average number of edges
per vertex

�= γ

2q
(1+ (q−1)s2

0). (75)

reproducing (33).
In a similar way we may rederive the results (35) for the average

number of edges inside and outside the giant component. To this end we
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decompose the kernel (71) into contributions corresponding to the cases of
the new edge being connected to the giant component or not

K(∆C)=Kin(∆C)+Kout(∆C). (76)

Clearly

Kin(∆C)= s2
0 δ(∆C,0)+2s0(1− s0) δ(∆C,1), (77)

Kout(∆C)= (1− s0)2 δ(∆C,1). (78)

Proceeding as above we get for the biased probability to have a graph with
L+1 edges with the last edge added being connected to the giant compo-
nent

Pin(L+1;γ, q,N)= γ

2 �q
(2+ (q−2)s2

0 )P (L;γ, q,N). (79)

Summing over L this gives

Pin(γ, q,N)=
γ

2 �q
(2+ (q−2)s2

0), (80)

and hence

�in =�Pin(γ, q,N)=
γ

2q
(2+ (q−2)s2

0), (81)

which is identical with (35). Similarly one may rederive the result for �out.
The results for the average total number of edges and the average number
of edges inside and outside the giant component, respectively of atypical
graphs are hence directly linked with the balance between energetic and
entropic contributions to the probability of these graphs.

4.3. Adding a Vertex

Several interesting results may be obtained by investigating the evo-
lution of atypical graphs under addition of a new vertex. Compared with
the same procedure for typical graphs some special care is needed in the
present case of atypical graphs. The reason is the following. In order to
keep the statistical properties of the new vertex as simple as possible we
will assume that it is characterized by the simple Poissonian degree distri-
bution (1). In this sense we add a typical vertex to an atypical graph. This
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in turn implies a change in the “degree of unlikeliness” of the graph which
needs to be monitored.

To make this argument more quantitative consider the following basic
step of adding one vertex. The probability of a graph G with N vertices
and parameter γ is from (2) given by

P(G;γ,N)= e− γN
2 +γ ( 1

2 − γ
4 +L(G)

N
)+o(1)

( γ
N

)L(G)
, (82)

and depends on its number of edges, L(G), only. The new vertex is
assumed to have d incident edges with probability P(d;γ )=e−γ γ d/d!, cf.
(1). There are

(
N
d

)
different ways to connect these d edges with existing

vertices. The new graph is one of these possible “wirings”, and has there-
fore probability

P(d;γ ) 1(
N
d

) P(G;γ,N)

= e− γ
2N+γ ( 1

2 − γ
4 +L(G)

N
)−γ+o(1)

( γ
N

)L(G)+d (
1+O

(
1
N

))
. (83)

But the new graph, G′, is one particular graph with N + 1 vertices and
L(G′)=L(G)+d edges. Its probability should therefore be

P(G′;γ,N +1)= e− γ
2 (N+1)+γ ( 1

2 − γ
4 +L(G)+d

N+1 )+o(1)
(

γ

N +1

)L(G)+d
. (84)

Equality of expressions (83) and (84) imposes that

γ

2
= ln

(
N +1
N

)L(G)+d
= L(G)

N
+O

(
1
N

)
. (85)

This is fulfilled for typical graphs since for these the mean number of
edges per vertex is indeed γ /2, cf. (53). However, if we add a typical vertex
to an atypical graph with � �=γ /2 we have to introduce an extra multipli-
cative weight factor

w(γ, q)= exp
(γ

2
−�(γ, q)

)
(86)

in order to make the new graph an unbiased representative of the new
ensemble.
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Let us now investigate how the probability P(C;γ,N) for a graph to
have C components as defined in (3) changes when we add a new vertex.
The number of components will decrease by a stochastic amount ∆C, and
we have similarly to (70)

P(C;γ,N +1)=
∑
∆C

K(∆C)P (C+∆C;γ,N). (87)

The new kernel K has now to comprise both the extra weight (86) of
the new vertex and the probability for the change ∆C when adding the
new vertex. The degree d of the new vertex, which is also the number
of new edges added to the graph, is a stochastic variable with Poissonian
distribution e−γ γ d/d!. Of these d edges, d0 may be connected with the
giant component whereas the remaining d − d0 ones are connected with
small components which (with probability 1 for N→∞) are all different
from each other. The number of components is hence reduced by d− d0,
except for the case d0 =0 where it changes by d−1. We therefore find

K(∆C)=
∑
d≥0

e−
γ
2 −� γ d

d!

d∑
d0=0

(
d

d0

)
s
d0
0 (1− s0)d−d0 δ(∆C,d−d0 − δ(d0,0)),

(88)

where s0 is the relative size of the giant component prior to the insertion
of the new vertex.

In order to obtain results for atypical graphs from (87) we again mul-
tiply by qC and sum over C to find

Z(γ, q,N +1)=Σ(γ, q)Z(γ, q,N), (89)

where

Σ(γ, q)=
∑
∆C

K(∆C)q−∆C. (90)

and K(∆C) results from K(∆C) by replacing � and s0 by �(γ, q) and
s0(γ, q) as given by (24) and (75), respectively. Using (88), performing the
sum over ∆C, d0 and finally over d we are left with

Σ(γ, q)= (q−1+ eγ s0) exp
(− γ

2
−�+ γ

q
(1− s0)

)
. (91)
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Iterating (89) we find

lim
N→∞

1
N

ln Z(γ, q,N)= lnΣ(γ, q). (92)

Comparison with (7) and insertion of (75) shows that (91) reproduces the
result for the free energy ϕ(γ, q) in the form (25). To complete the rederi-
vation of results of the thermodynamic approach we still have to produce
the self-consistent equation (24) for s0(γ, q).

4.4. The Giant Component

More detailed results can be obtained by again decomposing the ker-
nel K(∆C) in (87) into different contributions. E.g., in order to reproduce
the self-consistent equation for s0 we decompose K(∆C) into parts corre-
sponding to the possible values of d0:

K(∆C)=
∑
d0≥0

Kd0(∆C), (93)

where

Kd0(∆C) = e
γ
2 −�

∞∑
d=d0

e−γ
γ d

d!

(
d

d0

)
s
d0
0 (1− s0)d−d0

×δ(∆C,d−d0 − δ(d0,0)). (94)

For the probability of a graph with N +1 vertices to have C components
and the last vertex added making d0 connections with the giant compo-
nent we then get

P(C,d0;γ,N +1)=
∑
∆C

Kd0(∆C)P (C+∆C;γ,N). (95)

Multiplying with qC/Z(γ, q,N + 1), summing over C, and specifying
to the case d0 = 0 we get for the biased probability that the new vertex
does not belong to the giant component

P(d0 =0;γ, q,N +1)= 1
Z(γ, q,N +1)

∑
∆C

Kd0=0(∆C)q
−∆C Z(γ, q,N)

= Σd0=0(γ, q)

Σ(γ, q)
, (96)



Erdös–Rényi Random Graphs 415

where we have used (6), (89), and introduced

Σd0=0(γ, q)=
∑
∆C

Kd0=0(∆C)q
−∆C. (97)

Performing the sum over ∆C and d we find

Σd0=0(γ, q)=q exp
(

−γ
2

−�+ γ

q
(1− s0)

)
. (98)

On the other hand for large N the probability (96) has to be identified
with 1− s0(γ, q). Using (91) and (98) this yields finally

1− s0 = q

q−1+ eγ s0
, (99)

which coincides with (24).

4.5. The Degree Distribution

It is finally possible to derive expressions for the complete degree dis-
tribution in rare graphs by decomposing the kernel K(∆C) in (87) into
different parts according to the value of d (rather than d0 as done above)

K(∆C)=
∑
d≥0

Kd(∆C), (100)

where now

Kd(∆C) = e−
γ
2 −� γ d

d!

d∑
d0=0

(
d

d0

)
s
d0
0 (1− s0)d−d0

×δ(∆C,d−d0 − δ(d0,0)). (101)

For the probability of a graph with N +1 vertices to have C compo-
nents and the last vertex added having d edges this implies

P(C,d;γ,N +1)=
∑
∆C

Kd(∆C)P (C+∆C;γ,N). (102)
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Multiplying by qC/Z(γ, q,N + 1) and summing over C we find for the
biased probability that the added vertex has degree d,

P(d;γ, q,N +1)= Σd(γ, q)

Σ(γ, q)
, (103)

where we have again used (89), and defined

Σd(γ, q)=
∑
∆C

Kd(∆C)q
−∆C. (104)

Calculating explicitly the above sum, and using (91) and (99), we obtain
the degree distribution,

P(d;γ, q)= 1− s0

q
e
− γ
q
(1−s0) γ

d

d!

[(
s0 + 1− s0

q

)d
+ (q−1)

(
1− s0

q

)d]
.

(105)

This distribution reduces to the Poissonian law expected from (1) for
q=1 only. For q �=1 we find deviations from a Poissonian degree distribu-
tion, where for large values of γ and q even a bimodal distribution may
occur. For the average degree we obtain from (105)

d̄(γ, q)= γ

q

(
1+ (q−1)s2

0(γ, q)
)
, (106)

where we have made use of the self-consistent equation (99). Since each
edge is connected with two vertices this result is consistent with (75).

While (105) gives the distribution of degrees for a randomly chosen
vertex in the graph, we may ask for more detailed information depending
on whether the vertex belongs, or does not belong to the giant compo-
nent. Let us call Pin(d;γ, q) and Pout(d;γ, q) the biased distributions of
degrees for a vertex, respectively, inside and outside the giant component.
The generalization of the above calculation is straightforward. Pout(d;γ, q)
and Pin(d;γ, q) are obtained from specializing the kernel K to d, d0 = 0
and d,1�d0 �d, respectively. The calculations are very similar to the one
presented above, the results read

Pout(d;γ, q)= e−
γ
q
(1−s0) 1

d!

(
γ (1− s0)

q

)d
, (107)

Pin(d;γ, q)=
1− s0

qs0
e
− γ
q
(1−s0) γ

d

d!

[(
s0 + 1− s0

q

)d
−
(

1− s0

q

)d]
. (108)
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These equations give a rather detailed description of the connectivity in
atypical graphs. For q= 1 they reproduce (54) and (55), respectively. The
corresponding average degrees dout and d in are in agreement with (36).
The remarkable fact that Pout(d;γ, q)=P ∗

out(d, γ /q) generalizes the map-
ping (68) to the case s0 �=0 and explains the similarity between the expres-
sions (51) and (34) for the number of components in typical and atypical
graphs, respectively. For large γ and q the distribution Pout(d;γ, q) is
peaked at small values of d whereas Pin(d;γ, q) is maximal for larger d
which gives rise to the possible bimodal form of the total distribution
P(d;γ, q). We also note

Pout(d=1;γ, q)=Pin(d=1;γ, q)=P(d=1;γ, q) (109)

for all values of γ and q showing the special role of leaves in the graphs.
For all other values of d the distributions Pout(d;γ, q) and Pin(d;γ, q) dif-
fer from each other. Of course Pin(d=0;γ, q) since no isolated vertex may
belong to the giant component.

Figure 8 shows the degree distributions inside and outside the giant
component for d = 2 and d = 3 at γ = 3 as function of q together with
results from numerical simulations. With increasing q the biased distri-
bution (5) gets more and more dominated by graphs with many compo-
nents. From Fig. 8 we infer that in this process both Pout(d=2;γ, q) and
Pin(d=2;γ, q) increase. Nevertheless P(d=2, γ, q) and therefore the total
number of vertices carrying two edges decreases due to the shrinking of
the giant component (cf. left inset in Fig. 3).

It is interesting to note that

P̃ (d) = qs0
1+(q−1)s0

Pin(d;γ, q)+ 1−s0
1+(q−1)s0

Pout(d;γ, q) (110)

= e− γ
q
(1+(q−1)s0) 1

d!

(
γ
q
(1+ (q−1)s0)

)d
, (111)

and P̃ (d) is therefore Poissonian with parameter

γ̃ = γ

q
(1+ (q−1)s0). (112)

Unfortunately we have at the moment no clear idea about the relevance of
this distribution for the properties of the random graph ensemble.
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Fig. 8. Degree distributions Pin(d;γ, q) (dashed top) and Pout(d;γ, q) (full) as given by
(107) and (108) as functions of q for γ = 3, d = 2 (left) and d = 3 (right). The numeri-
cal results are shown by symbols (diamond=inside, circle=outside the giant component). The
dashed vertical line indicates the critical value qM, where the giant component ceases to
exist. The statistical error bars are much smaller than the symbol size.

4.6. The Distribution of Small Component Sizes

The result (107) for the degree distribution outside the giant com-
ponent allows to calculate the complete size distribution of non-extensive
components ψ(S, γ, q). As noted in subsection 4.1, the small components
are almost certainly trees, i.e., a component of size S=O(1) involves S−1
edges. From the degree distribution (107) we get for the probability P to
find among N(1− s0) vertices a set of S vertices that make S−1 connec-
tions with each other and none with the remaining ones to leading order
in N

P =
(
N(1− s0)

S

) (
γ

qN

)S−1 (
1− γ

qN

)(N(1−s0)−S
)
S

(113)

∼ N

S!
q

γ

(γ
q
(1− s0)

)S
e
− γ
q
(1−s0)S . (114)

Not all of these sets form trees however, since not all of them are con-
nected. The number of (unlabeled) trees of S vertices is SS−2.(24) For the
number of small components of size S per vertex (of the complete graph)
we hence find

ψ(S, γ, q)= 1
N
SS−2 P = q

γ

SS−2

S!

(
γ

q
(1− s0) e

− γ
q
(1−s0)

)S
. (115)
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Fig. 9. Distribution ψ(S, γ, q) of the size S of non-extensive components in graphs with
an atypical number of components. Left panel is for γ = 0.25 showing the results for q =
0.135 (full line and circles) and q=2.72 (dashed line and squares), respectively. Right panel is
for γ =3.0 and q=5.29 (full line and circles) and q=2.72 (dashed line and squares), respec-
tively. Lines show the analytical result (115), symbols represent results from numerical simu-
lations.

Figure 9 compares this expression for ψ(S, γ, q) with results from
numerical simulations described in Section 5. The agreement is again very
good except for relatively large components with correspondingly small
probabilities, ψ(S, γ, q)�10−6, where the statistical error in the simulation
data prevents a meaningful comparison.

For q = 1 the result (115) for ψ(S, γ, q) reduces to (63) after using
(52). Moreover comparison of (115) with (63) shows

ψ(S, γ, q)= (1− s0(γ, q))ψ
∗(S, γ ′) (116)

with

γ ′ = γ

q
(1− s0(γ, q)). (117)

Hence in an atypical graph of the discussed type the vertices not belonging
to the giant component can be considered to be a typical random graph
of N ′ =N(1 − s0) vertices with effective connectivity parameter γ ′. Multi-
plying (115) by S and summing over S we find

γ ′ =
∑
S

SS−1

S!
(γ ′e−γ ′)S (118)
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implying γ ′ � 1.7 We have hence always s∗(γ ′)= 0. On the one hand this
implies that the outside vertices are not able to build up a giant compo-
nent of their own and therefore shows the self-consistency of our assump-
tion that there is only one giant component in rare random graphs of the
considered type. On the other hand it allows to easily derive results for
q �= 1 from the corresponding ones for q= 1, s∗0 = 0. For the total number
of components per vertex we find, e.g., from (116) and (51)

c(γ, q)=
∑
S

ψ(S, γ, q)= (1− s0)
∑
S

ψ∗(S, γ ′) (119)

= (1− s0) c
∗(γ ′)= (1− s0)

(
1− γ ′

2

)
(120)

= (1− s0)
(

1− γ

2q
(1− s0)

)
(121)

reproducing (34). Similarly one may rederive the expression (49) for the
second moment of ψ(S, γ, q) which, however, follows more directly by
differentiating (118) with respect to γ ′.

We finally note that the evolution equations for the various prob-
ability distributions employed in this section are correct in the large N

limit. For finite N , care must be paid to the fact that the addition of an
edge or a vertex slightly changes the degrees of the vertices giving rise
to O(1/N) corrections. Similar corrections occur in the application of the
cavity method to spin glasses as discussed in chapter V in.(14) These addi-
tional terms are, however, irrelevant in the calculations presented above.

5. NUMERICAL SIMULATIONS

In order to check the analytical results described above, we have per-
formed Monte Carlo simulations to generate graphs with atypical numbers
of components. We have performed simulations for graph sizes between
N = 50 and N = 10,000, the results shown are for N = 1000, where most
simulations were performed. The rare-event algorithm(25) used works in
the special case here as follows:

One starts with an initial graph G, e.g., a typical random graph with
connectivity γ and calculates the number of components C(G). The sim-
ulation is performed for a given value of q.8 Each Monte Carlo step con-
sists of the following steps:

7This result may be obtained independently by using (24) in (117) to get γ ′ = (1 − s0)/

(qs0) ln(1+qs0/(1− s0))�1 for all q >0 and all s0 with 0� s0 �1.
8The parameter q corresponds to the temperature T used in ref. 24 via q= exp(1/T ). The
number of components C corresponds to the energy H via C=−sign(T )H .
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• a trial graph G′ is generated;

– copy G to G′,
– select one vertex i in G′ randomly,

– delete all edges adjacent to i,

– for all other vertices j �= i generate edge (i, j) with probability
γ /N ,

• calculate number of components C(G′);
• accept G′ as new configuration G with the Metropolis probability

min{1, qC(G′)−C(G)}.

In equilibrium, this procedure generates graphs distributed according
to the probability distribution P(G;γ, q,N) as given by (5). Equilibra-
tion was established in the following way. Two runs were started with two
different initial configurations. One was a typical random graph the other
one for q<1 (q>1) a graph having minimal (maximal) number of compo-
nents, i.e., a fully connected graph (a graph without edges). In the simula-
tion the number of components C(t) was recorded as a function of Monte
Carlo sweeps (MCS) t . The system was considered to be equilibrated after
time t0, if C(t0) agrees within the typical fluctuations for the two start-
ing configurations. For N=1000 this was the case for all values of q after
t0 = 20 MCS (γ < 3), respectively, t0 = 50 MCS (γ = 3). Hence the system
equilibrates very quickly and does not show any sign of glassy behaviour.
The average value of C found in the simulation depends on the value of q.
For values q<1 the average number of components is preferentially small,
while for q > 1 it is high. After equilibration, we have taken every t0
MCS graphs for analysis, 104 graphs for each value of q. This allows to
obtain various quantities, as the degree distributions or size distributions
of components, as a function of q.

In order to obtain numerical results for ω(c, γ ) we need to determine
P(C;γ,N) for all values C ∈ [1,N ]. Since simulations for one given value
of q are dominated by graphs with number of components close to the
typical number Nc(γ, q) corresponding to this value of q, simulations at
various values of q have to be combined.(25) To this end one records dur-
ing the simulation for each value of q the biased probability distribution
P(C;γ, q,N)=∑

G P (G;γ, q,N)δ(C,C(G)). From (5) and (3) one finds
for each q

P (C;γ,N)=q−C Z(γ, q,N)P (C;γ, q,N). (122)
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In order to extract from this relation P(C;γ,N) for values of C around
Nc(γ, q) �=Nc∗, we still have to determine Z(γ, q,N). This in turn can
be done by starting from q= 1, where the value Z(γ,1,N)= 1 is known.
For values of q close to q = 1, the measured ranges of the distributions
P(C;γ,1,N) and P(C;γ, q,N) overlap with each other and Z(γ, q,N)

can be obtained from matching both distributions in this overlapping
range. This procedure can be iterated to obtain Z(γ, q,N) for values of
q differing by an increasing amount from the starting point q= 1. Using
(122) the complete distribution P(C;γ,N) can be determined. In our sim-
ulations using N = 1000 and γ = 0.25,1,2,3 between 22 and 27 different
values of q where sufficient to obtain P(C;γ,N) and therefore ω(c, γ )

over the full range.

6. CONCLUSION

In the present paper we have investigated large deviation properties
in ensembles of Erdös–Rényi random graphs. In particular we have stud-
ied graphs that are atypical with respect to their number of components.
We have shown that several of their properties such as their probability,
the relative size of their giant component, as well as the second moment
of the distribution of component sizes can be obtained from the Legendre
transform with respect to ln q of the mean-field free energy of the q-state
Potts model. This generalizes the well-known connection between typical
properties of random graphs and the q→1 limit of the Potts free energy.
Therefore this free energy conveys also interesting information about
the random graph ensemble for values of q �= 1. In particular the well-
known first order phase transition in the mean-field Potts model for q >2
gives rise to a non-convex part in the logarithmic probability of the graphs
corresponding to a bimodal probability distribution P(C;γ, q,N).

In a second part we have rederived these results without recourse
to the Potts model by requiring the “statistical stability” of the random
graph ensemble under the insertion of an additional vertex or edge. This
approach is made possible by the mere existence of the thermodynamic
limit in which the number of vertices N tends to infinity. Besides repro-
ducing the results obtained previously we have also pointed out some sub-
tleties of this method when applied to exponentially rare configurations.
Moreover we obtained as additional results the complete degree distri-
bution and the size distribution of non-extensive components in atypical
graphs.

From the mathematical point of view both approaches rest on the
assumptions that for the various quantities introduced the thermodynamic
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limit in which the number N of vertices of the graphs tends to infinity
exist and that there is at most one extensive component comprising O(N)
vertices.

Our analytical findings describing the thermodynamic limit are in very
good agreement with numerical simulations using a rare-event algorithm
for N =1000.

It is well known that the typical properties of Erdös–Rényi random
graphs with fixed number of edges and fixed probability of edges are
equivalent. This equivalence does, however, not carry over to the large
deviation behaviour. In fact in an ensemble with fixed number of edges
there is no energetic contribution to the probability of a rare graph and
the large deviation characteristics will be rather different from those stud-
ied in the present paper.

Further work to improve our understanding of the relationship
between the two processes (one more edge or one more vertex) would be
useful. It would also be interesting to see how the microscopic approach
may be generalized for the study of graphs which are atypical with respect
to other properties than their number of components as, e.g., their num-
ber of vertex covers,(10) their average degree or the size of their giant com-
ponent, where the connection to the Potts model cannot be used. After
completion of this work we became aware of another very recent applica-
tion of the cavity method to characterize certain properties of rare random
graphs.(26)

APPENDIX A

In this appendix we give some intermediate results for the derivation
of the Potts free energy (15), see also.(18) The explicit determination of the
partition function is possible since the energy function (12) depends on the
configuration of spins {σi} solely through the fractions

x(σ, {σi})= 1
N

N∑
i=1

δ(σ, σi) (123)

of variables σi equal to σ . Clearly

∑
σ

x(σ, {σi})=1 (124)
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for all {σi}. The energy (12) may then be rewritten as

E({σi})=−N
2

∑
σ

(
x(σ, {σi})

)2 −Nh
∑
σ

uσ x(σ, {σi})+O(1), (125)

and the partition function (13) becomes to leading order in N

Z(β, h, q, {uσ })=
∑
{σi }

exp

(
βN

2

∑
σ

x(σ, {σi})2 +Nh
∑
σ

uσ x(σ, {σi})
)

=
∑

{x(σ )}

N !∏q−1
σ=0[N x(σ)]!

exp

(
βN

2

∑
σ

x(σ )2 +βNh
∑
σ

uσ x(σ )

)

=
1∫

0

q−1∏
σ=0

dx(σ ) exp

(
N

[
β

2

∑
σ

x(σ )2 +βh
∑
σ

uσ x(σ )−
∑
σ

x(σ ) ln x(σ )

])
.

The sum and the integral over x(σ ) are restricted to the normalized sub-
space defined by (124). In the limit of large N the integral may be evalu-
ated by the Laplace method. The Potts free energy (14) then reads

f (β,h, q, {uσ })= extr
{x(σ )}

[
−1

2

∑
σ

x(σ )2 −h
∑
σ

uσ x(σ )+ 1
β

∑
σ

x(σ ) ln x(σ )

]
.

(126)

We will need explicit results for the free energy and its derivatives for h=0
only. A suitable ansatz to perform the extremization in (126) for this case
is

x(0) = 1
q
(1+ (q−1)s0), (127)

x(σ ) = 1
q
(1− s0) for σ �=0 (128)

with the yet undetermined parameter s0. This ansatz allows for a possible
spontaneous breaking of the Potts symmetry at low temperature and auto-
matically fulfills the normalization (124). It gives rise to

f (β, q) = extr
s0

[
− 1

2q
− q−1

2q
s2

0 − 1
β

ln q+ 1+ (q−1)s0
βq

ln(1+ (q−1)s0)

+q−1
βq

(1− s0) ln(1− s0)
]
, (129)
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which is identical with (15). Differentiating the expression in the brack-
ets in (129) with respect to s we find for the extremum value s0(β, q) the
equation

eβs0 = 1+ (q−1)s0

1− s0
, (130)

reproducing (16).
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